New restrictions on possible orders of circulant Hadamard matrices

نویسندگان

  • Ka Hin Leung
  • Bernhard Schmidt
چکیده

We obtain several new number theoretic results which improve the field descent method. We use these results to rule out many of the known open cases of the circulant Hadamard matrix conjecture. In particular, the only known open case of the Barker sequence conjecture is settled.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heuristic algorithms for Hadamard matrices with two circulant cores

We design heuristic algorithms to construct Hadamard matrices with two circulant cores. This hard combinatorial problem can be formulated in terms of objective functions of several binary variables, so that heuristic methodologies can be used. Our algorithms are based on local and tabu search and they use information on the geometry of the objective function landscapes. In addition, we use the ...

متن کامل

Visualizing Hadamard Matrices: the Propus Construction

Propus (which means twins) is a construction method for orthogonal ±1 matrices based on the propus array A B C D C D −A −B B −A −D C D −C B −A. This construction, based on circulant symmetric ±1 matrices, called propus matrices, is aimed to give aesthetically pleasing visual images (pictures) when converted using MATLAB. It gives symmetric Hadamard matrices. We give two constructions and note t...

متن کامل

Signed Groups, Sequences, and the Asymptotic Existence of Hadamard Matrices

We use the newly developed theory of signed groups and some known sequences with zero autocorrelation to derive new results on the asymptotic existence of Hadamard matrices. New values of t are obtained such that, for any odd number p, there exists an Hadamard matrix of order 2tp. These include: t = 2N, where N is the number of nonzero digits in the binary expansion of p, and t = 4[-~ log2((p1)...

متن کامل

New Duality Operator for Complex Circulant Matrices and a Conjecture of Ryser

We associate to any given circulant complex matrix C another one E(C) such that E(E(C)) = C∗ the transpose conjugate of C. All circulant Hadamard matrices of order 4 satisfy a condition C4 on their eigenvalues, namely, the absolute value of the sum of all eigenvalues is bounded above by 4. We prove by a “descent” that uses our operator E that the only circulant Hadamard matrices of order n > 4,...

متن کامل

Hadamard ideals and Hadamard matrices with circulant core

Computational Algebra methods have been used successfully in various problems in many fields of Mathematics. Computational Algebra encompasses a set of powerful algorithms for studying ideals in polynomial rings and solving systems of nonlinear polynomial equations efficiently. The theory of Gröbner bases is a cornerstone of Computational Algebra, since it provides us with a constructive way of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2012